题目内容
己知函数,在处取最小值.
(1)求的值;
(2)在中,分别是的对边,已知,求角.
(1)求的值;
(2)在中,分别是的对边,已知,求角.
(1);(2)或.
试题分析:(1)先将函数解析式化为形如,这时要用倍角公式、降幂公式、两角和的正弦公式,得到,再利用在处取得最小值得关于的关系式,结合限制条件,解出;(2)解三角形问题,主要利用正余弦定理,本题可由,解出角,由正弦定理得,解出角或,再由三角形内角和为,解出或,本题求解角时,需注意解的个数,因为正弦函数在上有增有减.,所以有两个解.
试题解析:(1)
3分
因为在处取得最小值,所以
故,又
所以 6分
(2)由(1)知
因为,且为的内角
所以,由正弦定理得,所以或 9分
当时,
当时,
综上,或 12分.
练习册系列答案
相关题目