题目内容
某地区为了解高二学生作业量和玩电脑游戏的情况,对该地区内所有高二学生采用随机抽样的方法,得到一个容量为200的样本.统计数据如下:
(1)已知该地区共有高二学生42500名,根据该样本估计总体,其中喜欢电脑游戏并认为作业不多的人有多少名?
(2)在A,B,C,D,E,F六名学生中,仅有A,B两名学生认为作业多.如果从这六名学生中随机抽取两名,求至少有一名学生认为作业多的概率.
(1)7650名;(2)
解析试题分析:(1)利用样本估计总体,可求得喜欢电脑游戏并认为作业不多的人数;(2)用列举法,并利用古典概型即可求得至少有一名学生认为作业多的概率
试题解析:(1)(名) 5分
(2)【方法一】从这六名学生中随机抽取两名的基本事件有:{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F}共15个 7分
其中至少有一个学生认为作业多的事件有{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}共9个 9分
∴
即至少有一名学生认为作业多的概率为. 12分
【方法二】6名学生中随机抽取2名的选法有种, 7分
其中至少有一名学生认为作业多的选法有=9种, 9分
∴
即至少有一名学生认为作业多的概率为. 12分
【方法三】6名学生中随机抽取2名的选法有种, 7分
其中没有人认为作业多的选法有种 9分
∴
即至少有一名学生认为作业多的概率为. 12分
考点:统计,随机抽样,用样本估计总体,古典概型.
![](http://thumb.zyjl.cn/images/loading.gif)
某工厂生产A,B两种元件,其质量按测试指标划分,指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100个进行检测,检测结果统计如下:
测试 指标 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
元件A | 8 | 12 | 40 | 32 | 8 |
元件B | 7 | 18 | 40 | 29 | 6 |
(2)生产1个元件A,若是正品则盈利40元,若是次品则亏损5元;生产1个元件B,若是正品则盈利50元,若是次品则亏损10元.在(1)的前提下,
(ⅰ)X为生产1个元件A和1个元件B所得的总利润,求随机变量X的分布列和数学期望;
(ⅱ)求生产5个元件B所得利润不少于140元的概率.
某校夏令营有3名男同学和3名女同学
,其年级情况如下表:
| 一年级 | 二年级 | 三年级 |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
用表中字母列举出所有可能的结果
设
![](http://thumb.zyjl.cn/pic5/tikupic/95/d/frwgu.png)
![](http://thumb.zyjl.cn/pic5/tikupic/95/d/frwgu.png)