题目内容
以下茎叶图记录了甲、乙两组各三名同学在期末考试的数学成绩,乙组记录中有一个数字模糊,无法确认.假设这个数字具有随机性,并在图中以a表示.
(1)若甲、乙两个小组的数学平均成绩相同,求a的值;
(2)求乙组平均成绩超过甲组平均成绩的概率;
(3)当a=2时,分别从甲、乙两组中各随机选取一名同学,设这两名同学成绩之差的绝对值为X,求随机变量X的分布列和数学期望,
(1)1;(2);(3)详见解析.
解析试题分析:(1)根据平均数计算公式,直接由甲、乙两个小组的数学平均成绩相等列式求解的值; 李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):
(2)分值从共种情况,由(1)中求得的结果可得,当时,乙组平均成绩超过甲组平均成绩,然后由古典概率模型概率计算公式求概率;
(3)用枚举法列出所有可能的成绩结果,查出两名同学的数学成绩之差的绝对值为的情况数,然后由古典概率模型概率计算公式求概率,然后列分布列,根据公式,此题属于基础题型,关键是读懂题,就能拿满分.
试题解析:(1)依题意,得:
解得 . 3分
(2)解:设“乙组平均成绩超过甲组平均成绩”为事件,
依题意 ,共有种可能.
由(1)可知,当时甲、乙两个小组的数学平均成绩相同,
所以当时,乙组平均成绩超过甲组平均成绩,共有种可能.
因此乙组平均成绩超过甲组平均成绩的概率. 7分
(3)解:当时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有种, 它们是:
,,,,,,,,
则这两名同学成绩之差的绝对值的所有取值为
因此,,,,. 10分
所以随机变量的分布列为:0 1 2 3 4
场次 投篮次数 命中次数 场次 投篮次数 命中次数 主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12
(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;
(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;
(3)记为表中10个命中次数的平均数,从上述比赛中随机选择一场,记为李明在这场比赛中的命中次数,比较与的大小(只需写出结论)