题目内容
设某地区型血的人数占总人口数的比为
,现从中随机抽取3人.
(1)求3人中恰有2人为型血的概率;
(2)记型血的人数为
,求
的概率分布与数学期望.
(1);(2)
, 0 1 2 3 P
解析试题分析:由已知从该地区随机抽取3人,相当于将试验独立地做了3次,并且每一次抽得型血的人发生的概率相等均为
,且各次试验之间相互独立;从而可知
型血的人数为
服从参数为3和
的二项分布,即
,从而有
(1)令k=2,则得结果;(2)由k=0,1,2,3得到
的概率分布;再由公式
可求得
的数学期望.
试题解析:(1)由题意,随机抽取一人,是型血的概率为
, 2分
3人中有2人为
型血的概率为
. 6分
(2)的可能取值为0,1,2,3, 8分
,
,
,
, 12分
故的概率分布为:
0 1 2 3 P . 14分
考点:1.二项分布;2.数学期望.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目