题目内容
【题目】已知点是圆心为的圆上的动点,点,线段的垂直平分线交于点.
(1)求动点的轨迹的方程;
(2)矩形的边所在直线与曲线均相切,设矩形的面积为,求的取值范围.
【答案】(1) ;(2) .
【解析】试题分析:(1)利用定义法求椭圆的轨迹方程;(2)设的方程为, 的方程为,直线与间的距离为,直线与间的距离为, ,从而得到S的范围.
试题解析:
(1)依题,
所以 (为定值),
所以点的轨迹是以为焦点的椭圆,其中,
所以点轨迹的方程是
(2)①当矩形的边与坐标轴垂直或平行时,易得;
②当矩形的边均不与坐标轴垂直或平行时,其四边所在直线的斜率存在且不为0,
设的方程为, 的方程为,则的方程为, 的方程为,其中,
直线与间的距离为,
同理直线与间的距离为,
所以
,
因为直线与椭圆相切,所以,所以,同理,
所以
,
(当且仅当时,不等式取等号),
所以,即,
由①②可知, .
练习册系列答案
相关题目