题目内容
【题目】已知函数(0<φ<π)
(1)当φ时,在给定的坐标系内,用“五点法”做出函数f(x)在一个周期内的图象;
(2)若函数f(x)为偶函数,求φ的值;
(3)在(2)的条件下,求函数在[﹣π,π]上的单调递减区间.
【答案】(1)见解析;(2)φ;(3)[0,π]
【解析】
(1)先列表描点即可画出图像;(2)由偶函数求解即可;(3)求f(x)=的单调减区间则可求
(1)当φ时,,
列表如下:
| 0 |
|
|
|
|
x |
|
|
|
|
|
| 0 | 2 | 0 | ﹣2 | 0 |
用“五点法”作出函数的一个周期内的图象,如图所示;
(2)∵函数f(x)为偶函数,∴,
∵0<φ<π,∴φ;
(3)由(2)得,f(x)= ,
当x∈[﹣π,π]时,∴,
∴当,即x∈[0,π]时f(x)单调递减.
∴函数在[﹣π,π]上的单调递减区间[0,π].
【题目】为了巩固全国文明城市创建成果,今年吉安市开展了拆除违章搭建铁皮棚专项整治行为.为了了解市民对此项工作的“支持”与“反对”态度,随机从存在违章搭建的户主中抽取了男性、女性共名进行调查,调查结果如下:
支持 | 反对 | 合计 | |
男性 | |||
女性 | |||
合计 |
(1)根据以上数据,判断是否有的把握认为对此项工作的“支持”与“反对”态度与“性别”有关;
(2)现从参与调查的女户主中按分层抽样的方法抽取人进行调查,分别求出所抽取的人中持“支持”和“反对”态度的人数;
(3)现从(2)中所抽取的人中,再随机抽取人赠送小品,求恰好抽到人持“支持”态度的概率?
参考公式:,其中.
参考数据:
【题目】某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三 年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 5 | 9 | 11 | 9 | 7 | 9 |
满意人数 | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.