题目内容
【题目】设常数.在平面直角坐标系中,已知点,直线:,曲线:.与轴交于点、与交于点.、分别是曲线与线段上的动点.
(1)用表示点到点距离;
(2)设,,线段的中点在直线,求的面积;
(3)设,是否存在以、为邻边的矩形,使得点在上?若存在,求点的坐标;若不存在,说明理由.
【答案】(1);(2);(3)见解析.
【解析】
(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;
方法二:根据抛物线的定义,即可求得|BF|;
(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;
(3)设P及E点坐标,根据直线kPFkFQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.
(1)方法一:由题意可知:设,
则,
∴;
方法二:由题意可知:设,
由抛物线的性质可知:,∴;
(2),,,则,
∴,∴,设的中点,
,
,则直线方程:,
联立,整理得:,
解得:,(舍去),
∴的面积;
(3)存在,设,,则,,
直线方程为,∴,,
根据,则,
∴,解得:,
∴存在以、为邻边的矩形,使得点在上,且.
练习册系列答案
相关题目