题目内容
设函数
.
(1)当
,
时,求所有使
成立的
的值。
(2)若
为奇函数,求证:
;
(3)设常数
<
,且对任意x
,
<0恒成立,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142460723.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142476337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142491352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142507487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142523266.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142554448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142569537.png)
(3)设常数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142585291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142616440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142632398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142554448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142679277.png)
解:(1)
或
;(2)见解析 ;(3)
<
<
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142694327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142710338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142850353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142679277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142881414.png)
本试题主要是考查了函数的奇偶性与函数与不等式关系的运用,以及函数解析式的综合运用。
(1)当
,
时,函数
.
或![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142710338.png)
(2)若
为奇函数,则对任意的
都有
恒成立,则展开可得。
(3)由
<
<0, 当x=0时
取任意实数不等式恒成立.
当0<x≤1时,
<0恒成立,也即
<
<
恒成立.
从而构造函数得到结论。
解:(1)当
,
时,函数
.
或![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142710338.png)
(2) 若
为奇函数,则对任意的
都有
恒成立,
即
,
令x=0得b=0,令x=a得a=0,∴
(3)由
<
<0, 当x=0时
取任意实数不等式恒成立.
当0<x≤1时,
<0恒成立,也即
<
<
恒成立.
令
在0<x≤1上单调递增,∴
>
.
令
,则
在
上单调递减,
单调递增
当
<
时,
在0<x≤1上单调递减;
∴
<
,∴
<
<
.
当
≤
<
时
≥
.
∴
<
.∴
<
<
.
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142476337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142491352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142959666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225143037491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142694327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142710338.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142554448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225143287387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225143318620.png)
(3)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142585291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142616440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142679277.png)
当0<x≤1时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142554448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225143490454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142679277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225143521450.png)
从而构造函数得到结论。
解:(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142476337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142491352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142959666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225143037491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142694327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142710338.png)
(2) 若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142554448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225143287387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225143318620.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225143755784.png)
令x=0得b=0,令x=a得a=0,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142569537.png)
(3)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142585291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142616440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142679277.png)
当0<x≤1时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142554448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225143490454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142679277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225143521450.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144129658.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142679277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144161791.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144176674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144207489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144223497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144239564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144270235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142585291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144301226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144176674.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142679277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144660779.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142850353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142679277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144707343.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144738309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144301226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142585291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142616440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225144176674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142881414.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142679277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225145143780.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142850353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142679277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225142881414.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目