题目内容
【题目】已知函数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,若在区间上的最小值为,求的取值范围;
(Ⅲ)若对任意,有恒成立,求的取值范围.
【答案】(1);(2);(3).
【解析】试题分析:(Ⅰ)把a=1代入函数解析式,求导后求出f′(1),同时求出f(1),由点斜式写出切线方程;
(Ⅱ)求出函数的定义域,求出原函数的导函数,进一步求出导函数的零点,分和三种情况讨论三种情况讨论原函数的单调性,由f(x)在区间[1,e]上的最小值为-2求解的取值范围;
(Ⅲ)构造辅助函数g(x)=f(x)+2x,问题转化为函数g(x)在(0,+∞)上单调递增,求解的范围.把函数g(x)求导后分 =0和≠0讨论, ≠0时借助于二次函数过定点及对称轴列式求解.
试题解析:
(1)由,则
,所以切线方程为
(2)
令
当时, 在上单调递增,
当时, 在上单调递减, (舍)
当时, 在上单调递减, 在上单调递增, (舍)
综上,
(3)令
令,只要在上单调递增即可.
在上恒成立.
在上恒成立.
当时, 恒成立;
当时,原不等式
当时,原不等式,左边无最大值,不合题意(舍)
综上, .
练习册系列答案
相关题目