题目内容
【题目】若不等式2xlnx≥﹣x2+ax﹣3对x∈(0,+∞)恒成立,则实数a的取值范围是( )
A.(﹣∞,0)
B.(0,+∞)
C.(﹣∞,4]
D.[4,+∞)
【答案】C
【解析】解:∵2xlnx≥﹣x2+ax﹣3对x∈(0,+∞)恒成立, ∴a≤x+2lnx+ ,x>0,
令y=x+2lnx+ ,
则 = ,
由y′=0,得x1=﹣3,x2=1,
x∈(0,1)时,y′<0;
x∈(1,+∞)时,y′>0.
∴x=1时,ymin=1+0+3=4.
∴a≤4.
∴实数a的取值范围是(﹣∞,4].
故选:C.
由已知条件推导出a≤x+2lnx+ ,x>0,令y=x+2lnx+ ,利用导数性质求出x=1时,y取最小值4,由此能求出实数a的取值范围.
练习册系列答案
相关题目
【题目】某同学在求函数y=lgx和 的图象的交点时,计算出了下表所给出的函数值,则交点的横坐标在下列哪个区间内( )
x | 2 | 2.125 | 2.25 | 2.375 | 2.5 | 2.625 | 2.75 | 2.875 | 3 |
lgx | 0.301 | 0.327 | 0.352 | 0.376 | 0.398 | 0.419 | 0.439 | 0.459 | 0.477 |
0.5 | 0.471 | 0.444 | 0.421 | 0.400 | 0.381 | 0.364 | 0.348 | 0.333 |
A.(2.125,2,25)
B.(2.75,2.875)
C.(2.625,2.75)
D.(2.5,2.625)