题目内容
6.设f(x)=$\frac{1}{1+x}$,数列{an}满足:a1=$\frac{1}{2}$,an+1=f(an),n∈N*.(1)若λ1,λ2为方程f(x)=x的两个不相等的实根,证明:数列{$\frac{{a}_{n}-{λ}_{1}}{{a}_{n}-{λ}_{2}}$}为等比数列;
(2)证明:存在实数m,使得对?n∈N*,a2n-1<a2n+1<m<a2n+2<a2n.
分析 (1)由题意化简可得x2+x-1=0,从而可得λ1+λ2=-1,λ1λ2=-1;化简$\frac{{a}_{n+1}-{λ}_{1}}{{a}_{n+1}-{λ}_{2}}$•$\frac{{a}_{n}-{λ}_{2}}{{a}_{n}-{λ}_{1}}$=$\frac{\frac{1}{1+{a}_{n}}-{λ}_{1}}{\frac{1}{1+{a}_{n}}-{λ}_{2}}$•$\frac{{a}_{n}-{λ}_{2}}{{a}_{n}-{λ}_{1}}$=$\frac{-{λ}_{1}}{1+{λ}_{1}}$=-${λ}_{1}^{2}$;从而证明为等比数列;
(2)化简a2n+2=$\frac{1}{{a}_{2n+1}+1}$=$\frac{{a}_{2n}+1}{{a}_{2n}+2}$;从而得到$\frac{{a}_{2n}+1}{{a}_{2n}+2}$<a2n,从而只需使a2n>$\frac{\sqrt{5}-1}{2}$;同理可得a2n-1<$\frac{\sqrt{5}-1}{2}$;故令m=$\frac{\sqrt{5}-1}{2}$即可.
解答 证明:(1)∵f(x)=$\frac{1}{1+x}$,f(x)=x;
∴x2+x-1=0,
∴λ1+λ2=-1,λ1λ2=-1;
∴$\frac{{a}_{n+1}-{λ}_{1}}{{a}_{n+1}-{λ}_{2}}$•$\frac{{a}_{n}-{λ}_{2}}{{a}_{n}-{λ}_{1}}$
=$\frac{\frac{1}{1+{a}_{n}}-{λ}_{1}}{\frac{1}{1+{a}_{n}}-{λ}_{2}}$•$\frac{{a}_{n}-{λ}_{2}}{{a}_{n}-{λ}_{1}}$
=$\frac{1-{λ}_{1}-{λ}_{1}{a}_{n}}{1-{λ}_{2}-{λ}_{2}{a}_{n}}$•$\frac{{a}_{n}-{λ}_{2}}{{a}_{n}-{λ}_{1}}$
=$\frac{-{λ}_{1}{a}_{n}-{λ}_{1}{a}_{n}^{2}+{λ}_{1}+1-1}{{a}_{n}+{λ}_{1}{a}_{n}+{a}_{n}^{2}+{λ}_{1}{a}_{n}^{2}-{λ}_{1}-1}$
=$\frac{-{λ}_{1}}{1+{λ}_{1}}$=-${λ}_{1}^{2}$;
又∵${λ}_{1}^{2}$>0且$\frac{\frac{1}{2}-{λ}_{1}}{\frac{1}{2}-{λ}_{2}}$≠0,
∴数列{$\frac{{a}_{n}-{λ}_{1}}{{a}_{n}-{λ}_{2}}$}为以$\frac{\frac{1}{2}-{λ}_{1}}{\frac{1}{2}-{λ}_{2}}$为首项,-${λ}_{1}^{2}$为公比的等比数列;
(2)∵a2n+2=$\frac{1}{{a}_{2n+1}+1}$=$\frac{{a}_{2n}+1}{{a}_{2n}+2}$;
又∵a2n+2<a2n,
∴$\frac{{a}_{2n}+1}{{a}_{2n}+2}$<a2n,
故a2n>$\frac{\sqrt{5}-1}{2}$;
a2n+1=$\frac{{a}_{2n-1}+1}{{a}_{2n-1}+2}$,
又∵a2n-1<a2n+1,
∴a2n-1<$\frac{{a}_{2n-1}+1}{{a}_{2n-1}+2}$;
∴a2n-1<$\frac{\sqrt{5}-1}{2}$;
∴令m=$\frac{\sqrt{5}-1}{2}$,
则对?n∈N*,a2n-1<a2n+1<m<a2n+2<a2n成立.
点评 本题考查了函数与数列的综合应用,同时考查了等比数列的证明,化简很复杂,属于难题.
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | $\frac{2\sqrt{3}}{3}$ |