题目内容
【题目】袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:
(1)A:取出的两球都是白球;
(2)B:取出的两球1个是白球,另1个是红球.
【答案】(1);(2).
【解析】
写出任取两个小球的所有方法,(1)写出从4个白球中任取两个的方法总数,即可求得概率;(2)写出其中1个为红球,而另1个为白球的方法总数,即可求得概率.
设4个白球的编号为1,2,3,4,2个红球的编号为5,6,
从袋中的6个小球中任取两个的方法为(1,2),(1,3),(1,4),
(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),
(3,5),(3,6),(4,5),(4,6),(5,6)共15个.
(1)从袋中的6个球中任取两个,所取的两球全是白球的总数,
即是从4个白球中任取两个的方法总数,共有6个,
即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),
∴取出的两个球全是白球的概率为.
(2)从袋中的6个球中任取两个,其中1个为红球,
而另1个为白球,其取法包括(1,5),(1,6),
(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8个,
∴取出的两个球1个是白球,另1个是红球的概率.
【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量(单位:万只)与相应年份(序号)的数据表和散点图(如图所示),根据散点图,发现与有较强的线性相关关系,李四提供了该县山羊养殖场的个数(单位:个)关于的回归方程.
年份序号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年养殖山羊y/万只 | 1.2 | 1.5 | 1.6 | 1.6 | 1.8 | 2.5 | 25 | 2.6 | 2.7 |
根据表中的数据和所给统计量,求关于的线性回归方程(参考统计量:,);
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.
【题目】某农科所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了2015年12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程bx+a;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得到的线性回归方程是否可靠?
,.