题目内容
【题目】已知函数.
(1)讨论在上的零点个数;
(2)当时,若存在,使,求实数的取值范围.(为自然对数的底数,其值为2.71828……)
【答案】(1)见解析;(2)
【解析】
(1)构造函数,先将讨论在上的零点个数问题,转化为讨论直线与曲线的交点个数问题,用导数方法研究函数单调性,求出值域,即可得出结果;
(2)根据(1)的结果,由求出零点,得到,再由题意得到成立,构造函数,用导数方法研究其单调性,进而可求出结果.
(1)由得,令,
因此讨论在上的零点个数,即是讨论直线与曲线的交点个数,
∵,在上恒成立,
故在上单调递增,,
又连续不断,所以当时,在上无零点;
当时,在上存在一个零点.
(2)当时,由(1)得在上存在一个零点,
由得,
由(1)可得在上单调递减,在上单调递增;
所以,
又存在,使成立,
所以,只需成立,即不等式成立,
令,
则,
易知在上恒成立,
故在上单调递增
又,所以.
故实数的取值范围为.
练习册系列答案
相关题目
【题目】根据以往的经验,某建筑工程施工期间的降水量(单位:)对工期的影响如下表:
降水量 | ||||
工期延误天数 | 0 | 1 | 3 | 6 |
根据某气象站的资料,某调查小组抄录了该工程施工地某月前天的降水量的数据,绘制得到降水量的折线图,如下图所示.
(1)求这天的平均降水量;
(2)根据降水量的折线图,分别估计该工程施工延误天数的概率.
【题目】某商品要了解年广告费(单位:万元)对年利润(单位:万元)的影响,对近4年的年广告费和年利润数据作了初步整理,得到下面的表格:
广告费 | 2 | 3 | 4 | 5 |
年利润 | 26 | 39 | 49 | 54 |
(Ⅰ)用广告费作解释变量,年利润作预报变量,建立关于的回归直线方程;
(Ⅱ)根据(Ⅰ)的结果预报广告费用为6万元时的年利润.
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.