题目内容

【题目】设椭圆的方程为=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)( )

A.必在圆x2+y2=2内

B.必在圆x2+y2=2外

C.必在圆x2+y2=1外

D.必在圆x2+y2=1与圆x2+y2=2形成的圆环之间

【答案】D

【解析】椭圆的方程为=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1和x2

则x1+x2=-,x1·x2=-

x+x=(x1+x2)2-2x1·x2>=1+e2

因为0<e<1,

即0<e2<1.

所以1<e2+1<2,

所以x+x>1,

<=2,

所以1<x+x<2,

即点P在圆x2+y2=1与x2+y2=2形成的圆环之间.故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网