题目内容
数列{an}中a1 = 2,
,{bn}中
.
(1)求证:数列{bn}为等比数列,并求出其通项公式;
(2)当
时,证明:
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939007541.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939007662.gif)
(1)求证:数列{bn}为等比数列,并求出其通项公式;
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939039491.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231329390541240.gif)
(1)证明见解析。
(2)证明见解析。
(2)证明见解析。
证明:(1) 由![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231329390542012.gif)
又
∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939101447.gif)
又n = 1时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939117692.gif)
∴
为等比数列,b1 = 2,
,∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939163620.gif)
(2) ∵
∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939179754.gif)
先证:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939195679.gif)
当n为偶数时,显然成立;
当n为奇数时,即证![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939210951.gif)
而当
时,
显然也成立,故![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939257682.gif)
当
时,令![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231329393041440.gif)
又令
①
②
①-②:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939351764.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231329393661702.gif)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939382268.gif)
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939397994.gif)
∴所证式子左边![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939429879.gif)
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231329394601249.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231329390542012.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939085673.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939101603.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939101447.gif)
又n = 1时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939117692.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939132351.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939148275.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939163620.gif)
(2) ∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939163926.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939179754.gif)
先证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939195679.gif)
当n为偶数时,显然成立;
当n为奇数时,即证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939210951.gif)
而当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939226231.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939241377.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939257682.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939288234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231329393041440.gif)
又令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939319673.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939335743.gif)
①-②:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939351764.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231329393661702.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939382268.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939397994.gif)
∴所证式子左边
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132939429879.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231329394601249.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目