题目内容
7.已知向量$\overrightarrow{a}$={1,-1,2},$\overrightarrow{b}$={-2,2,m},且$\overrightarrow{a}$$∥\overrightarrow{b}$,则m的值为( )A. | 4 | B. | -4 | C. | 2 | D. | -2 |
分析 利用向量共线定理即可得出.
解答 解:∵$\overrightarrow{a}$$∥\overrightarrow{b}$,
∴存在实数λ使得$\overrightarrow{a}=λ\overline{b}$,
∴(1,-1,2)=λ(-2,2,m),
∴$\left\{\begin{array}{l}{1=-2λ}\\{-1=2λ}\\{2=λm}\end{array}\right.$,解得m=-4.
故选:B.
点评 本题考查了向量共线定理,属于基础题.
练习册系列答案
相关题目
12.已知点F(1,0),直线l:x=-1,动点P到点F的距离等于它到直线l的距离.
(1)试判断点P的轨迹C的形状,并写出其方程;
(2)若曲线C与直线m:y=x-1相交于A、B两点,求△OAB的面积.
(1)试判断点P的轨迹C的形状,并写出其方程;
(2)若曲线C与直线m:y=x-1相交于A、B两点,求△OAB的面积.
19.在△ABC中,若c=2bcosA,则△ABC的形状一定是( )
A. | 等腰三角形 | B. | 等边三角形 | C. | 直角三角形 | D. | 钝角三角形 |
6.已知双曲线M的焦点与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的焦点相同.如果直线y=-$\sqrt{2}$x是M的一条渐近线,那么M的方程为( )
A. | $\frac{{x}^{2}}{18}$-$\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{18}$=1 | C. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1 | D. | $\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1 |