题目内容
19.在△ABC中,若c=2bcosA,则△ABC的形状一定是( )A. | 等腰三角形 | B. | 等边三角形 | C. | 直角三角形 | D. | 钝角三角形 |
分析 已知等式利用正弦定理化简,把sinC=sin(A+B)代入,利用两角和与差的正弦函数公式化简,整理得到A=B,即可确定出三角形形状.
解答 解:由c=2bcosA,利用正弦定理化简得:sinC=2sinBcosA,
把sinC=sin(A+B)=sinAcosB+cosAsinB代入得:sinAcosB+cosAsinB=2sinBcosA,
即sinAcosB-cosAsinB=sin(A-B)=0,即A-B=0,
∴A=B,即a=b,
则△ABC为等腰三角形,
故选:A.
点评 此题考查了正弦定理,以及两角和与差的正弦函数公式,熟练掌握定理及公式是解本题的关键,属于基础题.
练习册系列答案
相关题目
9.过直线x+y+2=0上点P作圆x2+y2=1的两条切线,切点分别为A,B,∠APB=60°,则点P的坐标是( )
A. | (0,-2)或(-2,0) | B. | (0,2)或(-2,0) | C. | (-2,0) | D. | (0,-2) |
10.f(x)定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意的正数a,b,若a<b,则必有( )
A. | bf(b)≤af(a) | B. | bf(a)≤af(b) | C. | af(a)≤bf(b) | D. | af(b)≤bf(a) |
7.已知向量$\overrightarrow{a}$={1,-1,2},$\overrightarrow{b}$={-2,2,m},且$\overrightarrow{a}$$∥\overrightarrow{b}$,则m的值为( )
A. | 4 | B. | -4 | C. | 2 | D. | -2 |
14.设x>0,则x+$\frac{4}{x}$的最小值为( )
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
11.下列说法正确的是( )
A. | 命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1” | |
B. | “a、b都是有理数”的否定是“a、b都不是有理数” | |
C. | 命题“若x=y,则sinx=siny”的逆否命题为真命题 | |
D. | “x=-1”是“x2-5x-6=0”的必要不充分条件 |
18.已知直线y=kx+1与椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1恒有公共点,则实数m的取值范围为( )
A. | m≥1 | B. | m≥1且m≠1 | C. | m≥1且m≠5 | D. | 0<m<5且m≠1 |