题目内容
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449254702.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234492701441.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449285426.png)
(II)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234494571009.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449472930.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449504427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449519393.png)
(1)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234496912024.png)
数列{an}是首项为
,公比为
的等比数列。 (2)9
>
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449628723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234496912024.png)
数列{an}是首项为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449706303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449738364.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449504427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449519393.png)
本试题主要是考查了数列的求和和数列的通项公式的 运用。证明数列是否为等比数列以及关于数列的单调性的运用。比较大小。
(1)对n赋值得到前两项,然后发现规律得到
,从而证明等比数列
(2)由(1)知
,然后利用分组求和得到前n项和的结论,并利用作差法比较大小。
证明:(1)
=2,
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234499092050.png)
,
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234500813731.png)
∴
,∴数列{an}是首项为
,公比为
的等比数列。
(2)由(1)知![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449831760.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234494571009.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234504401963.png)
两式相减得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223450518961.png)
,又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234506111207.png)
当n=1时,9
<
;
当n=2时,9
<
;
当n≥3时,22n=[(1+1)n]2=(
)2>(2n+1)2,∴9
>
.
(1)对n赋值得到前两项,然后发现规律得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234498003691.png)
(2)由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449831760.png)
证明:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449847507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449628723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234499092050.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234499251180.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234500813731.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223450128640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449706303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449738364.png)
(2)由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449831760.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234494571009.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234504401963.png)
两式相减得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234504861670.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223450518961.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223450533881.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232234506111207.png)
当n=1时,9
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449504427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449519393.png)
当n=2时,9
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449504427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449519393.png)
当n≥3时,22n=[(1+1)n]2=(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223450908673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449504427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223449519393.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目