题目内容
,定义,其中n∈N*.
(Ⅰ)求的值,并求证:数列{an}是等比数列;
(II)若,其中n∈N*,试比较9与大小,并说明理由.
(Ⅰ)求的值,并求证:数列{an}是等比数列;
(II)若,其中n∈N*,试比较9与大小,并说明理由.
(1),
数列{an}是首项为,公比为的等比数列。 (2)9>.
数列{an}是首项为,公比为的等比数列。 (2)9>.
本试题主要是考查了数列的求和和数列的通项公式的 运用。证明数列是否为等比数列以及关于数列的单调性的运用。比较大小。
(1)对n赋值得到前两项,然后发现规律得到
,从而证明等比数列
(2)由(1)知,然后利用分组求和得到前n项和的结论,并利用作差法比较大小。
证明:(1)=2,,
,
∴
∴,∴数列{an}是首项为,公比为的等比数列。
(2)由(1)知
两式相减得:
,又
当n=1时,9<;
当n=2时,9<;
当n≥3时,22n=[(1+1)n]2=()2>(2n+1)2,∴9>.
(1)对n赋值得到前两项,然后发现规律得到
,从而证明等比数列
(2)由(1)知,然后利用分组求和得到前n项和的结论,并利用作差法比较大小。
证明:(1)=2,,
,
∴
∴,∴数列{an}是首项为,公比为的等比数列。
(2)由(1)知
两式相减得:
,又
当n=1时,9<;
当n=2时,9<;
当n≥3时,22n=[(1+1)n]2=()2>(2n+1)2,∴9>.
练习册系列答案
相关题目