题目内容
(本小题满分14分)(注意:在试题卷上作答无效)
已知曲线
,从
上的点
作
轴的垂线,交
于点
,再从点
作
轴的垂线,交
于点
,设![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031713679.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031729638.png)
(1)求数列
的通项公式;
(2)记
,数列
的前
项和为
,试比较
与
的大小
;
(3)记
,数列
的前
项和为
,试证明:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032088865.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032103896.png)
已知曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230315261092.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031542313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031557671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031573266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031604383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031620357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031620357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031651310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031542313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031698737.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031713679.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031729638.png)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031760475.png)
(2)记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031776636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031807450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031838297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031854388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031854388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031900455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031916617.png)
(3)记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230320101044.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032025510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031838297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032072373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032088865.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032103896.png)
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230321971691.png)
;
(2)
,由
,
,
,
当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230326181159.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230326651775.png)
;
(3)见解析。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230321971691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032228660.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032259663.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032368721.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032400965.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230325561113.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032571195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032587421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230326181159.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230326341075.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230326651775.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230326801077.png)
(3)见解析。
(1)依题意确定点
的坐标为
,从而可得
,
所以可得
,所以再采用累加的方法求出
通项即可.
(2)先求出
,然后先求出S1,S2,S3验证均满足小于
,
然后证明当n>3时,
,采用了不等式放缩后易证.n>3时,
.
(3)先确定
,可得
,
然后可以利用此不等式进行放缩,
这是解决此题的突破口.
(1)依题意点
的坐标为
,
,
,
......2分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032571195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230321971691.png)
;
......4分
(2)
,由
,
,
,
当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230326181159.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230334141796.png)
;......8分
(3)
,所以易证:
,
当
时,
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230336321748.png)
,(当
时取“
”)......11分
另一方面,当
时,有:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230337101300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223033726940.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230337411586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230337571296.png)
,
又
,
,
.所以
对任意的
,都有![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032088865.png)
.......14分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031620357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032727607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032743688.png)
所以可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032774569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032790457.png)
(2)先求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032805628.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031900455.png)
然后证明当n>3时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230328521947.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032868692.png)
(3)先确定
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230328991038.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032930706.png)
然后可以利用此不等式进行放缩,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230329461690.png)
(1)依题意点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223031620357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032727607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223033008717.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223033195595.png)
......2分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032571195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230321971691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032228660.png)
......4分
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032259663.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032368721.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032400965.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230325561113.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032571195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032587421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230326181159.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230333981093.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230334141796.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230326801077.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230334601077.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032930706.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032571195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223033601435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230336161521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230336321748.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223033648853.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223033663357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223033679164.png)
另一方面,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223033694737.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230337101300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223033726940.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230337411586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230337571296.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230337881125.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230338041754.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230338191305.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230338351276.png)
对任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223033897531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032088865.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223032103896.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目