题目内容
【题目】已知函数f(x)=|x﹣a|+|x+2|.
(1)若a=1.解不等式f(x)≤x2﹣1;
(2)若a>0,b>0,c>0.且f(x)的最小值为4﹣b﹣c.求证:.
【答案】(1){x|x≤﹣2或x≥1}(2)证明见解析
【解析】
(1)对绝对值函数进行分段讨论,解不等式即可;
(2)求出的最小值,得到,利用柯西不等式证明即可.
(1)当a=1时,f(x)=|x﹣1|+|x+2|,
当x≤﹣2时,﹣2x﹣1≤x2﹣1,得x2+2x≥0,所以x≤﹣2;
当﹣2<x<1时,3≤x2﹣1,得x2≥4,无解
当x≥1时,由2x+1≤x2﹣1,得x2﹣2x﹣2≥0,得x≥1,
综上,不等式的解集为{x|x≤﹣2或x≥1};
(2)证明:
因为f(x)=|x﹣a|+|x+2|≥|x﹣a﹣x﹣2|=|a+2|=a+2=4﹣b﹣c,
得a+b+c=2,
所以2,
当且仅当a+b=c=1时成立,
故原命题得证.
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差/摄氏度 | 10 | 11 | 13 | 12 | 8 |
发芽数/颗 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天的数据的概率;
(2)若选取的是12月1日与12月5日的2组数据,请根据12月2日至4日的数据,求出关于的线性回归方程,由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
附:参考公式:,.