题目内容
7.如图,已知⊙O1与⊙O2外切于点A,⊙O1的弦BC的延长线切⊙O2于点D,BA交⊙O2于点E,求证:∠CAD=∠DAE.分析 过点A作两圆的公切线GF交BD于G,延长DA交⊙O1于H,连接BH,根据已知条件和图形证明△AED∽△ADC,得到答案
解答 证明:过点A作两圆的公切线GF交BD于G,延长DA交⊙O1于H,连接BH,
则∠ADC=∠FAC,∠H=∠BAG,
∵∠BAG=∠FAC,
∴∠H=∠ADC,
根据圆内接四边形的性质可知:∠H=∠DEA,
∴∠DEA=∠ADC,
又∵AE:AD=ED:DC,
∴△AED∽△ADC,
∴∠CAD=∠DAE.
点评 本题考查相切两圆的性质和相似三角形的判定和性质,正确作出辅助线构造相似三角形是解题的关键,注意两圆公切线的性质的应用.
练习册系列答案
相关题目
17.山东某市2008年至2012年新建商品住宅每平方米的均价y
(单位:千元)的数据如表:
(Ⅰ)求y关于x的线性回归方程$\hat y=\hat b•x+\hat a$;
(Ⅱ)利用(Ⅰ)中的回归方程,分析从2008年到2012年该市新建商品住宅每平方米均价的变化情况,并预测该市2015年新建商品住宅每平方米的均价.
附:回归直线的斜率和截距的最小二乘估计公式分别为$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x•\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a=\bar y-\hat b•\bar x$.
(单位:千元)的数据如表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 |
年份序号x | 1 | 2 | 3 | 4 | 5 |
每平米均价y | 2.0 | 3.1 | 4.5 | 6.5 | 7.9 |
(Ⅱ)利用(Ⅰ)中的回归方程,分析从2008年到2012年该市新建商品住宅每平方米均价的变化情况,并预测该市2015年新建商品住宅每平方米的均价.
附:回归直线的斜率和截距的最小二乘估计公式分别为$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x•\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a=\bar y-\hat b•\bar x$.
12.确定结论“X与Y有关系”的可信度为99.5%时,则随即变量k2的观测值k必须( )
A. | 大于10.828 | B. | 大于7.879 | C. | 小于6.635 | D. | 大于2.706 |