题目内容

如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)如果三棱锥的体积为3,求.

(1)证明过程详见解析;(2).

解析试题分析:本题主要以三棱锥为几何背景考查线线垂直、平行的判定,线面垂直,面面垂直的判定以及用空间向量法求二面角的余弦值,考查空间想象能力和计算能力.第一问,根据已知条件,取中点,连结,得出,再利用,根据线面垂直的判定证出平面,从而得到垂直平面内的线,再利用为中位线,得出平面,最后利用面面垂直的判定证明平面垂直平面;第二问,根据已知进行等体积转换,利用三棱锥的体积公式列出等式,解出的值.
试题解析:(Ⅰ)取中点为,连结
因为,所以
,所以平面
因为平面,所以.        3分
由已知,,又,所以
因为,所以平面
平面,所以平面⊥平面.      5分
(Ⅱ)由(Ⅰ)知,平面
,因为的中点,所以
,      10分
解得,即.        12分
考点:1.线面垂直的判定和性质;2.面面垂直的判定;3.锥体的体积公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网