ÌâÄ¿ÄÚÈÝ
17£®ÒÑÖªÇúÏßC£º$\left\{\begin{array}{l}{x=2cos¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±Ïßl£º$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$£¨tΪ²ÎÊý£©£®£¨¢ñ£©Ð´³öÇúÏßCµÄ¼«×ø±ê·½³ÌºÍÖ±ÏßlÔÚyÖáÉϵĽؾࣻ
£¨¢ò£©¹ýÇúÏßCÉÏÈÎÒ»µãP×÷Óël¼Ð½ÇΪ30¡ãµÄÖ±Ïߣ¬½»lÓÚµãA£¬Çó|PA|µÄ×î´óÖµÓë×îСֵ£®
·ÖÎö ±¾Ì⣨¢ñ£©ÓÉÇúÏßCÓвÎÊý·½³Ì£¬ÏûÈ¥²ÎÊýºó£¬µÃµ½ÆäÆÕͨ·½³Ì£¬ÔÙÓù«Ê½$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$£¬µÃµ½ÇúÏßCµÄ¼«×ø±ê·½³Ì£¬ÓÉÖ±ÏßlµÄ²ÎÊý·½³Ì£¬ÏûÈ¥²ÎÊýºó£¬µÃµ½ÆäÆÕͨ·½³Ì£¬Áîx=0£¬µÃµ½Ö±ÏßlÔÚyÖáÉϵĽؾ࣮
£¨¢ò£©½«Ö±ÏßlƽÒÆÖÁÓëÇúÏßCÏàÇУ¬µÃµ½Ö±Ïßm£¬Çó³öÇеã¼ÇΪP£¬¹ýµãP×÷Óël¼Ð½ÇΪ30¡ãµÄÖ±Ïߣ¬½»lÓÚµãA£¬´ËʱµÄ|PA|³¤¿ÉÒÔÀûÓÃÖ±½ÇÈý½ÇÐÎÈ¥¼ÆË㣬ËùµÃ³¤¼´Îª×îÖµ£®
½â´ð ½â£º£¨¢ñ£©¡ßÇúÏßC£º$\left\{\begin{array}{l}{x=2cos¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡à$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{9}=1$£®
Áî$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$£¬
µÃ£º¦Ñ2£¨9cos2¦È+4sin2¦È£©=36£®
¡ßÖ±Ïßl£º$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡à2x+y-6=0£®
Áîx=0£¬µÃ£ºy=3£®
¡àÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ2£¨9cos2¦È+4sin2¦È£©=36£®Ö±ÏßlÔÚyÖáÉϵĽؾàΪ3£®
£¨¢ò£©½«Ö±ÏßlƽÒÆÖÁÓëÇúÏßCÏàÇУ¬µÃµ½Ö±Ïßm£¬
ÉèÖ±ÏßmµÄ·½³ÌΪ£º2x+y+n=0£®
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{9}=1}\\{2x+y+n=0}\end{array}\right.$£¬
µÃµ½£º25x2+16nx+4n2-36=0£¬
Áî¡÷=0£¬µÃ£º£¨16n£©2-4¡Á25¡Á£¨4n2-36£©=0£¬
¡àn=¡À5£¬
Ö±Ïßl£º2x+y-6=0ÓëÖ±Ïßm1£º2x+y-5=0µÄ¾àÀëΪ£º
$d=\frac{|-5-£¨-6£©|}{\sqrt{{2}^{2}+{1}^{2}}}=\frac{\sqrt{5}}{5}$£¬
$\frac{d}{sin30¡ã}=\frac{2\sqrt{5}}{5}$£¬
Ö±Ïßl£º2x+y-6=0ÓëÖ±Ïßm2£º2x+y+5=0µÄ¾àÀëΪ£º
$d=\frac{|-6-5|}{\sqrt{{2}^{2}+{1}^{2}}}=\frac{11\sqrt{5}}{5}$£¬
$\frac{d}{sin30¡ã}=\frac{22\sqrt{5}}{5}$£¬
¡à|PA|µÄ×î´óֵΪ$\frac{22\sqrt{5}}{5}$£¬×îСֵΪ$\frac{2\sqrt{5}}{5}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢²ÎÊý·½³Ìת»¯ÎªÆÕͨ·½³Ì£¬Ö±ÏßÓëԲ׶ÇúÏßµÄλÖùØϵ£¬Æ½ÐÐÏß¼äµÄ¾àÀ룬±¾ÌâÓÐÒ»¶¨µÄ¼ÆËãÁ¿£¬ÄѶÈÊÊÖУ¬ÊôÓÚÖеµÌ⣮
A£® | 2+$\frac{1}{2}$log32 | B£® | 2-$\frac{1}{2}$log23 | C£® | 2+log23 | D£® | 2+$\frac{1}{3}$log23 |