题目内容
11.若|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{5π}{6}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{13}$.分析 由题意利用两个向量的数量积的定义求得$\overrightarrow{a}$•$\overrightarrow{b}$的值,再根据|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{{(\overrightarrow{a}-\overrightarrow{b})}^{2}}$,计算求得结果.
解答 解:由题意可得$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}$×2×cos$\frac{5π}{6}$=-3,
∴|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{{(\overrightarrow{a}-\overrightarrow{b})}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}{+\overrightarrow{b}}^{2}}$=$\sqrt{3+6+4}$=$\sqrt{13}$,
故答案为:$\sqrt{13}$.
点评 本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.
练习册系列答案
相关题目
19.2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图(如图):
(Ⅰ)根据频率分布直方图估计小区平均每户居民的平均损失
表一:
(Ⅱ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50居民捐款情况如表,在表一空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(Ⅲ)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
附:临界值表
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
(Ⅰ)根据频率分布直方图估计小区平均每户居民的平均损失
表一:
经济损失4000元以下 | 经济损失4000元以上 | 合计 | |
捐款超过500元 | 30 | ||
捐款低于500元 | 6 | ||
合计 |
(Ⅲ)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
附:临界值表
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
3.下列命题中,正确的是( )
A. | 若|$\overrightarrow{a}$|=0,则$\overrightarrow{a}$=0 | B. | 若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$ | ||
C. | 若$\overrightarrow{a}$与$\overrightarrow{b}$是平行向量,则|$\overrightarrow{a}$|=|$\overrightarrow{b}$| | D. | 若$\overrightarrow{a}$=$\overrightarrow{0}$,则-$\overrightarrow{a}$=$\overrightarrow{0}$ |