题目内容
10.下列各种情况下,向量的终点在平面内各构成什么图形.①把所有单位向量移到同一起点;
②把平行于某一直线的所有单位向量移到同一起点;
③把平行于某一直线的一切向量移到同一起点.
①以向量起点为圆心,半径为单位长度1的圆;②两个点;③直线.
分析 分别作出①②③中给出的向量的终点所对应的图形得答案.
解答 解:如图,
①
由图可知,向量终点的轨迹为圆;
②
由图可知,向量终点的轨迹为两个定点A,B;
③
向量终点的轨迹为直线($\overrightarrow{0}$起点和终点重合).
故答案为:①以向量起点为圆心,半径为单位长度1的圆;②两个点;③直线.
点评 本题考查了平行向量与共线向量,考查了向量的平移,是基础题.
练习册系列答案
相关题目
13.设a为实常数,y=f(x)是定义在R上的奇函数,当x>0时,f(x)=4x+$\frac{1}{x}$+3,则对于y=f(x)在x<0时,下列说法正确的是( )
A. | 有最大值7 | B. | 有最大值-7 | C. | 有最小值7 | D. | 有最小值-7 |
18.已知矩形ABCD,E、F分别是BC、AD的中点,且BC=2AB=2,现沿EF将平面ABEF折起,使平面ABEF⊥平面EFDC,则三棱锥A-FEC的外接球的体积为( )
A. | $\frac{{\sqrt{3}}}{3}π$ | B. | $\frac{{\sqrt{3}}}{2}π$ | C. | $\sqrt{3}π$ | D. | $2\sqrt{3}π$ |
5.一名射击运动员对靶射击,直到第一次命中为止,若每次命中的概率是0.6,且各次射击结果互不影响,现在有4颗子弹,则命中后剩余子弹数X的均值为( )
A. | 2.44 | B. | 3.376 | C. | 2.376 | D. | 2.4 |
15.设集合S={y|y=3x,x∈R},T={y|y=x2+1,x∈R},则S∪T=( )
A. | ∅ | B. | S | C. | T | D. | {0,1} |
19.2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图(如图):
(Ⅰ)根据频率分布直方图估计小区平均每户居民的平均损失
表一:
(Ⅱ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50居民捐款情况如表,在表一空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(Ⅲ)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
附:临界值表
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
(Ⅰ)根据频率分布直方图估计小区平均每户居民的平均损失
表一:
经济损失4000元以下 | 经济损失4000元以上 | 合计 | |
捐款超过500元 | 30 | ||
捐款低于500元 | 6 | ||
合计 |
(Ⅲ)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
附:临界值表
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |