题目内容
6.公差不为零的递增等差数列{an}的前n项和为Sn,若a4=2,S8=32,则log2(a6-a3)=( )A. | 2+$\frac{1}{2}$log32 | B. | 2-$\frac{1}{2}$log23 | C. | 2+log23 | D. | 2+$\frac{1}{3}$log23 |
分析 设出等差数列的公差,由题意列式求得公差,代入log2(a6-a3)得答案.
解答 解:设等差数列的公差为d(d>0),
由题意可得:$\left\{\begin{array}{l}{{a}_{1}+3d=2}\\{8{a}_{1}+\frac{8×7d}{2}=32}\end{array}\right.$,解得d=4.
∴log2(a6-a3)=log23d=log212=2+log23.
故选:C.
点评 本题考查了等差数列的通项公式,考查了等差数列的前n项和,考查了对数的运算性质,是基础的计算题.
练习册系列答案
相关题目
19.2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图(如图):
(Ⅰ)根据频率分布直方图估计小区平均每户居民的平均损失
表一:
(Ⅱ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50居民捐款情况如表,在表一空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(Ⅲ)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
附:临界值表
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
(Ⅰ)根据频率分布直方图估计小区平均每户居民的平均损失
表一:
经济损失4000元以下 | 经济损失4000元以上 | 合计 | |
捐款超过500元 | 30 | ||
捐款低于500元 | 6 | ||
合计 |
(Ⅲ)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.
附:临界值表
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |