题目内容
【题目】已知数列{an}的前n项和Sn=1+λan , 其中λ≠0.
(1)证明{an}是等比数列,并求其通项公式;
(2)若S5= ,求λ.
【答案】
(1)
解:∵Sn=1+λan,λ≠0.
∴an≠0.
当n≥2时,an=Sn﹣Sn﹣1=1+λan﹣1﹣λan﹣1=λan﹣λan﹣1,
即(λ﹣1)an=λan﹣1,
∵λ≠0,an≠0.∴λ﹣1≠0.即λ≠1,
即 = ,(n≥2),
∴{an}是等比数列,公比q= ,
当n=1时,S1=1+λa1=a1,
即a1= ,
∴an= ( )n﹣1
(2)
解:若S5= ,
则若S5=1+λ( ( )4= ,
即( )5= ﹣1=﹣ ,
则 =﹣ ,得λ=﹣1
【解析】(1)根据数列通项公式与前n项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.(2)根据条件建立方程关系进行求解就可.本题主要考查数列递推关系的应用,根据n≥2时,an=Sn﹣Sn﹣1的关系进行递推是解决本题的关键.考查学生的运算和推理能力.
【考点精析】本题主要考查了等比关系的确定和数列的通项公式的相关知识点,需要掌握等比数列可以通过定义法、中项法、通项公式法、前n项和法进行判断;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.
练习册系列答案
相关题目