题目内容
【题目】某市场调查发现,某种产品在投放市场的30天中,其销售价格P(元)和时间t(天)(t∈N)的关系如图所示
(1)写出销售价格P(元)和时间t(天)的函数解析式;
(2)若日销售量Q(件)与时间t(天)的函数关系是Q=﹣t+40(0≤t≤30,t∈N),求该商品的日销售金额y(元)与时间t(天)的函数解析式;
(3)问该产品投放市场第几天时,日销售金额最高?最高值为多少元?
【答案】
(1)解:由题意:根据图象可知该销售价格P(元)和时间t(天)分段的两条直线,
设P1=k1t+b1,图象过(0,19)和(25,44),
即得:19=k1×0+b1,44=k1×25+b1,
解得:b1=19,k1=1,
则P1=t+19,(0≤t<25)
设P2=k2t+b2,图象过(25,75)和(30,70),
即得: ,
解得:k2=﹣1,b2=100,
则P2=﹣t+100,(25≤t≤30).
∴销售价格P(元)和时间t(天)的函数解析式为P=
(2)解:日销售量Q(件)与时间t(天)的函数关系是Q=﹣t+40(0≤t≤30,t∈N),
则销售金额y=PQ=
(3)解:由(2)可知:当0≤t<25时,日销售金额y=﹣t2+21t+760,
当t=10或11天时,日销售金额y最大为870元.
当25≤t≤30时,日销售金额y=t2﹣140t+4000,
当t=25天时,日销售金额y最大为1125元.
∴该产品投放市场第25天时,日销售金额最高,最高值1125元
【解析】(1)根据图象可知该销售价格P(元)和时间t(天)分段的两条直线,设出函数解析式求解即可.(2)销售金额y=PQ化解可得函数解析式;(3)利用二次函数的性质求解日销售金额最高值.
练习册系列答案
相关题目