题目内容
【题目】如图所示(单位:cm),四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积.
【答案】表面积为,体积为.
【解析】
试题分析:由题意知,所围成的几何体的表面积等于圆台的下底面积+圆台的侧面积+半球表面,该几何体的体积圆台的体积减去半个球的体积,由此可求出结果.
试题解析:由题意知,知所成几何体的表面积等于圆台下底面积+圆台的侧面积+半球面面积.
又S半球面=×4π×22=8π(cm2),
S圆台侧=π(2+5)=35π(cm2),
S圆台下底=π×52=25π(cm2),
即该几何全的表面积为8π+35π+25π=68π(cm2).
又V圆台=×(22+2×5+52)×4=52π(cm3),V半球=××23=(cm3).
所以该几何体的体积为V圆台-V半球=52π-=(cm3).
练习册系列答案
相关题目
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如表的列联表:
算得,K2≈7.8.见附表:参照附表,得到的正确结论是( )
男 | 女 | 总计 | |||||
爱好 | 40 | 20 | 60 | ||||
不爱好 | 20 | 30 | 50 | ||||
总计 | 60 | 50 | 110 | ||||
P(K2≥k) | 0.050 | 0.010 | 0.001 | ||||
k | 3.841 | 6.635 | 10.828 | ||||
A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C. 有99%以上的把握认为“爱好该项运动与性别有关”
D. 有99%以上的把握认为“爱好该项运动与性别无关”