题目内容
(本题14分)
已知是一个奇函数.
(1)求的值和的值域;
(2)设>,若在区间是增函数,求的取值范围
(3) 设,若对取一切实数,不等式都成立,求的取值范围.
(1).(2);(3) .
解析试题分析:(1)根据为奇函数,可得,求得,进而求解值域。
(2) 首先把视为一个整体,求得得到函数的增区间,再利用
求得k值,进一步得到w的范围。
(3) 应用三角公式,将f(x)化简后, 得到,只需的最小值,转化成求二次函数的最小值问题。
解:(1) .
∵为奇函数,∴,,
∴,的值域为.
(2) 当时,为增函数,∵
∴.,
∴在区间上是增函数
依题意得,
∴ ∴ (),
∴ 得(也可根据图象求解).
(3)
.
由原不等式得,
又∵.当且仅当取等号.
要使原不等式恒成立,须且只需,∴,
∵,∴ .
考点:本题主要考查函数单调性和奇偶性以及不等式的恒成立问题的运用。
点评:解决该试题的关键是利用函数为奇函数,得到参数a的值,进而分析函数的单调性,熟练的掌握三角函数的单调区间很重要。
练习册系列答案
相关题目
(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 16 | 10 | 8.34 | 8.1 | 8.01 | 8 | 8.01 | 8.04 | 8.08 | 8.6 | 10 | 11.6 | 15.14 | … |
(1)函数在区间(0,2)上递减;函数在区间 上递增.当 时, .
(2)证明:函数在区间(0,2)递减.
(3)思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)