题目内容
定义在R上的函数
,满足
,若
且
,则有( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545547562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240425455631115.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545578429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545594512.png)
A.![]() | B.![]() | C.![]() | D.不能确定 |
A
由
,可知函数
关于
对称且
递增,
递减.由若
且
,所以
的位置关系只有两种.若
.则
成立.若
.则
.根据对称性可得
.综上结论成立.
【考点】1.函数的对称性.2.导函数的意义.3.分类讨论的思想.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240425455631115.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545547562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545719443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545719472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545750460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545578429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545594512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545797424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545797584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545609679.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545828580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545843667.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042545609679.png)
【考点】1.函数的对称性.2.导函数的意义.3.分类讨论的思想.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容
A.![]() | B.![]() | C.![]() | D.不能确定 |