题目内容
若函数(常数)是偶函数,且它的值域为,则该函数的解析式 .
解:∵f(x)=(x+a)(bx+2a)是偶函数,∴f(-x)=(-x+a)(-bx+2a)=f(x)=(x+a)(bx+2a),∴bx2-2ax-abx+2a2=bx2+2ax+abx+2a2,∴2ax+abx=0,即ax(2+b)=0恒成立,∴a=0或2+b=0.若a=0,则f(x)=bx2,若b>0,值域是y≥0,b<0,值域是y≤0,都不是(-∞,4],所以a≠0,故b+2=0,∴b=-2,所以f(x)=-2x2+2a2,∵-2x2≤0,所以值域是f(x)≤2a2,∴2a2=4,即f(x)=-2x2+4.
练习册系列答案
相关题目