题目内容
已知f(x)是R上的奇函数,对x∈R都有f(x+4)=f(x)+f(2)成立,若f(﹣1)=﹣2,则f(2013)等于( )
A.2 | B.﹣2 | C.﹣1 | D.2013 |
A
由f(x+4)=f(x)+f(2),取x=﹣2,得:f(﹣2+4)=f(﹣2)+f(2),即f(﹣2)=0,所以f(2)=0,
则f(x+4)=f(x)+f(2)=f(x),
所以f(x)是以4为周期的周期函数,
所以f(2013)=f(4×503+1)=f(1)=﹣f(﹣1)=﹣(﹣2)=2.
故选A.
则f(x+4)=f(x)+f(2)=f(x),
所以f(x)是以4为周期的周期函数,
所以f(2013)=f(4×503+1)=f(1)=﹣f(﹣1)=﹣(﹣2)=2.
故选A.
练习册系列答案
相关题目