题目内容
如图:在正方体ABCD-A1B1C1D1中,O、O1分别是AC、A1C1的中点,E是线段D1O上一点,且D1E=λEO(λ≠0).
(Ⅰ)求证:λ取不等于0的任何值时都有BO1∥平面ACE;
(Ⅱ)λ=2时,证明:平面CDE⊥平面CD1O.
(Ⅰ)求证:λ取不等于0的任何值时都有BO1∥平面ACE;
(Ⅱ)λ=2时,证明:平面CDE⊥平面CD1O.
分析:(I)证明四边形D1O1BO是平行四边形,可得BO1∥OE,利用线面平行的判定定理,可得结论;
(II)求出平面CD1O的一个法向量、平面CDE的法向量,证明
•
=0,可得平面CDE⊥平面CD1O.
(II)求出平面CD1O的一个法向量、平面CDE的法向量,证明
DB1 |
n |
解答:证明:(I)由题意,O、O1分别是AC、A1C1的中点,
∴四边形D1O1BO是平行四边形,
∴BO1∥OD1
∴BO1∥OE
∵OE?平面ACE,BO1?平面ACE,
∴λ取不等于0的任何值时都有BO1∥平面ACE;
(Ⅱ)不妨设正方体的棱长为1,以DA,DC,DD1为x,y,z轴建立空间直角坐标系,
则可得D(0,0,0),B1(1,1,1),O(
,
,0),C(0,1,0),D1(0,0,1)
∴
=(1,1,1),
=(0,-1,1),
=(-
,
,0)
∴
•
=0,
•
=0
∴DB1⊥CD1,DB1⊥OC
∴平面CD1O的一个法向量为
=(1,1,1),
∵λ=2,∴E(
,
,
)
又设平面CDE的法向量为
=(x,y,z)
∵
=(0,1,0),
=(
,
,
)
∴
∴可取
=(1,0,-1)
∴
•
=0
∴平面CDE⊥平面CD1O.
∴四边形D1O1BO是平行四边形,
∴BO1∥OD1
∴BO1∥OE
∵OE?平面ACE,BO1?平面ACE,
∴λ取不等于0的任何值时都有BO1∥平面ACE;
(Ⅱ)不妨设正方体的棱长为1,以DA,DC,DD1为x,y,z轴建立空间直角坐标系,
则可得D(0,0,0),B1(1,1,1),O(
1 |
2 |
1 |
2 |
∴
DB1 |
CD1 |
OC |
1 |
2 |
1 |
2 |
∴
DB1 |
CD1 |
DB1 |
OC |
∴DB1⊥CD1,DB1⊥OC
∴平面CD1O的一个法向量为
DB1 |
∵λ=2,∴E(
1 |
3 |
1 |
3 |
1 |
3 |
又设平面CDE的法向量为
n |
∵
DC |
DE |
1 |
3 |
1 |
3 |
1 |
3 |
∴
|
∴可取
n |
∴
DB1 |
n |
∴平面CDE⊥平面CD1O.
点评:本题在正方体中研究线面平行和面面垂直的问题,考查了利用空间坐标系研究空间的垂直问题等知识点,属于中档题.
练习册系列答案
相关题目