题目内容
如图,在长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348103913258.jpg)
(1)证明:BD⊥EC1;
(2)如果AB=2,AE=
,OE⊥EC1,求AA1的长.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348103913258.jpg)
(1)证明:BD⊥EC1;
(2)如果AB=2,AE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
(1)见解析(2)3![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
(1)连接AC,A1C1.由底面是正方形知,BD⊥AC.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348104384055.jpg)
因为AA1⊥平面ABCD,BD?平面ABCD,所以AA1⊥BD.
又AA1∩AC=A,所以BD⊥平面AA1C1C.
因为EC1?平面AA1C1C知,BD⊥EC1.
(2)设AA1的长为h,连结OC1.
在Rt△OAE中,AE=
,AO=
,
故OE2=(
)2+(
)2=4.
在Rt△EA1C1中,A1E=h-
,A1C1=2
,
故E
=(h-
)2+(2
)2.
在Rt△OCC1中,OC=
,CC1=h,O
=h2+(
)2.
因为OE⊥EC1,所以OE2+E
=O
,即
4+(h-
)2+(2
)2=h2+(
)2,
解得h=3
,所以AA1的长为3
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240348104384055.jpg)
因为AA1⊥平面ABCD,BD?平面ABCD,所以AA1⊥BD.
又AA1∩AC=A,所以BD⊥平面AA1C1C.
因为EC1?平面AA1C1C知,BD⊥EC1.
(2)设AA1的长为h,连结OC1.
在Rt△OAE中,AE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
故OE2=(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
在Rt△EA1C1中,A1E=h-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
故E
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810610393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
在Rt△OCC1中,OC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810610393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
因为OE⊥EC1,所以OE2+E
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810610393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810610393.png)
4+(h-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
解得h=3
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034810407344.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目