题目内容
已知数列{an}的前n项和Sn=12n-n2
(Ⅰ)求数列{an}的通项公式,并证明{an}是等差数列;
(Ⅱ)若cn=12-an,求数列{
}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式,并证明{an}是等差数列;
(Ⅱ)若cn=12-an,求数列{
1 |
cn•cn+1 |
解( I)当n≥2时,an=Sn-Sn-1=12n-n2-[12(n-1)-(n-1)2]=13-2n,
当n=1时,a1=S1=12-1=11适合上式,
∴an=13-2n,
∴当n∈N*时,an+1-an=13-2(n+1)-(13-2n)=-2为定值,
∴数列{an}是等差数列;
( II)∵cn=12-an=12-(13-2n)=2n-1,n∈N*,
∴
=
=
(
-
),
∴Sn=
[(1-
)+(
-
)+…+(
-
)]=
(1-
)=
.
当n=1时,a1=S1=12-1=11适合上式,
∴an=13-2n,
∴当n∈N*时,an+1-an=13-2(n+1)-(13-2n)=-2为定值,
∴数列{an}是等差数列;
( II)∵cn=12-an=12-(13-2n)=2n-1,n∈N*,
∴
1 |
cn•cn+1 |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
∴Sn=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n-1 |
1 |
2n+1 |
1 |
2 |
1 |
2n+1 |
n |
2n+1 |
练习册系列答案
相关题目