题目内容

【题目】在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(12分)
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.

【答案】
(1)

解:曲线y=x2+mx﹣2与x轴交于A、B两点,

可设A(x1,0),B(x2,0),

由韦达定理可得x1x2=﹣2,

若AC⊥BC,则kACkBC=﹣1,

即有 =﹣1,

即为x1x2=﹣1这与x1x2=﹣2矛盾,

故不出现AC⊥BC的情况;


(2)

证明:设过A、B、C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),

由题意可得y=0时,x2+Dx+F=0与x2+mx﹣2=0等价,

可得D=m,F=﹣2,

圆的方程即为x2+y2+mx+Ey﹣2=0,

由圆过C(0,1),可得0+1+0+E﹣2=0,可得E=1,

则圆的方程即为x2+y2+mx+y﹣2=0,

再令x=0,可得y2+y﹣2=0,

解得y=1或﹣2.

即有圆与y轴的交点为(0,1),(0,﹣2),

则过A、B、C三点的圆在y轴上截得的弦长为定值3.


【解析】(1.)设曲线y=x2+mx﹣2与x轴交于A(x1 , 0),B(x2 , 0),运用韦达定理,再假设AC⊥BC,运用直线的斜率之积为﹣1,即可判断是否存在这样的情况;
(2.)设过A、B、C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),由题意可得D=m,F=﹣2,代入(0,1),可得E=1,再令x=0,即可得到圆在y轴的交点,进而得到弦长为定值.
【考点精析】本题主要考查了两条直线垂直与倾斜角、斜率的关系和圆的一般方程的相关知识点,需要掌握两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直;圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网