题目内容

【题目】已知函数f(x)=lnx+ax2+(2a+1)x.(12分)
(1)讨论f(x)的单调性;
(2)当a<0时,证明f(x)≤﹣ ﹣2.

【答案】
(1)

解:因为f(x)=lnx+ax2+(2a+1)x,

求导f′(x)= +2ax+(2a+1)= = ,(x>0),

①当a=0时,f′(x)= +1>0恒成立,此时y=f(x)在(0,+∞)上单调递增;

②当a>0,由于x>0,所以(2ax+1)(x+1)>0恒成立,此时y=f(x)在(0,+∞)上单调递增;

③当a<0时,令f′(x)=0,解得:x=﹣

因为当x∈(0,﹣ )时,f′(x)>0、当x∈(﹣ ,+∞)时,f′(x)<0,

所以y=f(x)在(0,﹣ )上单调递增、在(﹣ ,+∞)上单调递减.

综上可知:当a≥0时f(x)在(0,+∞)上单调递增,

当a<0时,f(x)在(0,﹣ )上单调递增、在(﹣ ,+∞)上单调递减;


(2)

证明:由(1)可知:当a<0时f(x)在(0,﹣ )上单调递增、在(﹣ ,+∞)上单调递减,

所以当x=﹣ 时函数y=f(x)取最大值f(x)max=f(﹣ )=﹣1﹣ln2﹣ +ln(﹣ ).

从而要证f(x)≤﹣ ﹣2,即证f(﹣ )≤﹣ ﹣2,

即证﹣1﹣ln2﹣ +ln(﹣ )≤﹣ ﹣2,即证﹣ (﹣ )+ln(﹣ )≤﹣1+ln2.

令t=﹣ ,则t>0,问题转化为证明:﹣ t+lnt≤﹣1+ln2.…(*)

令g(t)=﹣ t+lnt,则g′(t)=﹣ +

令g′(t)=0可知t=2,则当0<t<2时g′(t)>0,当t>2时g′(t)<0,

所以y=g(t)在(0,2)上单调递增、在(2,+∞)上单调递减,

即g(t)≤g(2)=﹣ ×2+ln2=﹣1+ln2,即(*)式成立,

所以当a<0时,f(x)≤﹣ ﹣2成立.


【解析】(1.)题干求导可知f′(x)= (x>0),分a=0、a>0、a<0三种情况讨论f′(x)与0的大小关系可得结论;
(2.)通过(1)可知f(x)max=f(﹣ )=﹣1﹣ln2﹣ +ln(﹣ ),进而转化可知问题转化为证明:当t>0时﹣ t+lnt≤﹣1+ln2.进而令g(t)=﹣ t+lnt,利用导数求出y=g(t)的最大值即可.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减),还要掌握解一元二次不等式(求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网