题目内容

【题目】设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1b1b2(a2a1)=b1

(1)求数列{an}和{bn}的通项公式;

(2)设cn,求数列{cn}的前n项和Tn

【答案】22. (1) n1时,a1S12

n≥2时,anSnSn12n22(n1)24n2

a1=2满足上式,

an4n2. ………………………………………3

{bn}的公比为q,由b2(a2a1)b1知,b12b2,所以q

bnb1qn-1,即bn. …………………………6

(2)cn(2n1) 4n-1…………………………8

Tn13×415×42(2n1)4n-1

4Tn1×413×425×42(2n3)4n-1(2n1)4n②……………10

①-②得:-3Tn= 1+2(4142434n-1)-(2n1)4n

=-(2n1)4n

=

Tn [(6n5)4n5].

【解析】略

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网