题目内容
【题目】已知函数是奇函数,
(1)求实数m的值;
(2)判断函数的单调性并用定义法加以证明;
(3)若函数在上的最小值为,求实数a的值.
【答案】(1)m=-1;(2)见解析;(3)或
【解析】
(1)由奇函数满足,即可求解m,再检验是否为奇函数即可;
(2)利用定义法证明:设是定义在区间上的任意两个数,且,化简和0比较大小即可;
(3)由(2)可知函数为增函数,所以当时有最小值,代入解方程即可.
(1)由,得,经检验符合题意.本题也可用恒成立求解.
(2)函数是区间上的增函数.
下面用定义法证明:设是定义在区间上的任意两个数,且,
则.
因为,得,.
显然有,从而有.
因为当时,有成立,所以是区间上的增函数.
(3)由单调性知,当时有最小值,则,即,
解得或.
练习册系列答案
相关题目