题目内容
【题目】某IT从业者绘制了他在26岁~35岁(2009年~2018年)之间各年的月平均收入(单位:千元)的散点图:
(1)由散点图知,可用回归模型拟合与的关系,试根据附注提供的有关数据建立关于的回归方程
(2)若把月收入不低于2万元称为“高收入者”.
试利用(1)的结果,估计他36岁时能否称为“高收入者”?能否有95%的把握认为年龄与收入有关系?
附注:①.参考数据:,,,,,,,其中,取,
②.参考公式:回归方程中斜率和截距的最小二乘估计分别为:,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
③..
【答案】(1)(2)他36岁时能称为“高收入者”,有95%的把握认为年龄与收入有关系
【解析】
(1)分别计算出,,带入即可。
(2)将2代入比较即可,计算观测值,与临界值比较可得结论。
(1)令,则
∴
∴
(2)把带入
(千元)≥2(万元)
∴他36岁时能称为“高收入者”.
故有95%的把握认为年龄与收入有关系
【题目】支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.巴蜀中学高2018届学生为了调查支付宝在人群中的使用情况,在街头随机对名市民进行了调查,结果如下.
(1)对名市民按年龄以及是否使用支付宝进行分组,得到以下表格,试问能否有的把握认为“使用支付宝与年龄有关”?
使用支付宝 | 不使用支付宝 | 合计 | |
岁以上 | |||
岁以下 | |||
合计 |
(2)现采用分层抽样的方法,从被调查的岁以下的市民中抽取了位进行进一步调查,然后从这位市民中随机抽取位,求至少抽到位“使用支付宝”的市民的概率;
(3) 为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有的概率获得元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一周使用了次支付宝,记为这一周他获得的奖励金数,求的分布列和数学期望.
附:,其中.
【题目】为调查人们在购物时的支付习惯,某超市对随机抽取的600名顾客的支付方式进行了统计,数据如下表所示:
支付方式 | 微信 | 支付宝 | 购物卡 | 现金 |
人数 | 200 | 150 | 150 | 100 |
现有甲、乙、丙三人将进入该超市购物,各人支付方式相互独立,假设以频率近似代替概率.
(1)求三人中使用微信支付的人数多于现金支付人数的概率;
(2)记为三人中使用支付宝支付的人数,求的分布列及数学期望.