题目内容
【题目】已知右焦点为的椭圆关于直线对称的图形过坐标原点.
是椭圆的左顶点,斜率为的直线交于,两点,点在上,.
(Ⅰ)当时,求的面积;
(Ⅱ)当时,证明:.
【答案】(Ⅰ);
(Ⅱ)证明详见解析
【解析】
(Ⅰ)由椭圆关于直线的对称图形过原点,可得a、c的关系,再由a、b、c的关系,可得a、c的值,进而求得椭圆方程,由可知两线段关于x轴对称,直线AM倾斜角为,求出直线方程,与椭圆方程联立求得交点坐标,进而求得三角形面积.
(Ⅱ)用设而不求的方式,分别假设两条直线方程,并求出弦长,且两直线斜率互为负倒数,根据两弦长之间的斜率关系,得出斜率k的方程,根据函数与方程的关系,通过求导分析,证明结论.
(Ⅰ)由题意得椭圆的焦点在轴上,∵椭圆关于直线对称的图形过坐标原点,∴,∵,∴,解得.∴椭圆的方程为.设,则由题意知.
由已知及椭圆的对称性知,直线的倾斜角为,
又,因此直线的方程为.
将代入得,
解得或,所以.
因此的面积.
(2)将直线的方程代入得
.
由得,故.
由题设,直线的方程为,故同理可得.
由得,即.
设,则是的零点,,
所以在单调递增,又,,
因此在有唯一的零点,且零点在内,所以.
【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量y(单位:万件)的影响,统计了近10年投入的年研发费用x,与年销售量的数据,得到散点图如图所示:
(1)利用散点图判断,和(其中 为大于0的常数)哪一个更适合作为年研发费用和年销售量的回归方程类型(只要给出判断即可,不必说明理由).
(2)对数据作出如下处理:令,,得到相关统计量的值如下表:
15 | 15 | 28.25 | 56.5 |
根据(1)的判断结果及表中数据,求关于的回归方程;
(3)已知企业年利润z(单位:千万元)与,的关系为(其中…),根据(2)的结果,要使得该企业下年的年利润最大,预计下一年应投入多少研发费用?
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为,