题目内容
【题目】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;
(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.
【答案】(Ⅰ)见解析;(Ⅱ)
【解析】
(Ⅰ)由题意可知分布列为二项分布,结合二项分布的公式求得概率可得分布列,然后利用二项分布的期望公式求解数学期望即可;
(Ⅱ)由题意结合独立事件概率公式计算可得满足题意的概率值.
(Ⅰ)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,
故,从面.
所以,随机变量的分布列为:
0 | 1 | 2 | 3 | |
随机变量的数学期望.
(Ⅱ)设乙同学上学期间的三天中7:30之前到校的天数为,则.
且.
由题意知事件与互斥,
且事件与,事件与均相互独立,
从而由(Ⅰ)知:
.
练习册系列答案
相关题目
【题目】某校实行选科走班制度,张毅同学的选择是地理、生物、政治这三科,且生物在层班级.该校周一上午选科走班的课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法的种数为( )
第一节 | 第二节 | 第三节 | 第四节 |
地理1班 | 化学层3班 | 地理2班 | 化学层4班 |
生物层1班 | 化学层2班 | 生物层2班 | 历史层1班 |
物理层1班 | 生物层3班 | 物理层2班 | 生物层4班 |
物理层2班 | 生物层1班 | 物理层1班 | 物理层4班 |
政治1班 | 物理A层3班 | 政治2班 | 政治3班 |
A. 4B. 5C. 6D. 7