题目内容
设
是抛物线![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110700604.png)
上相异两点,
到y轴的距离的积为
且
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240221107634233.jpg)
(1)求该抛物线的标准方程.
(2)过Q的直线与抛物线的另一交点为R,与
轴交点为T,且Q为线段RT的中点,试求弦PR长度的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110685871.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110700604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110716508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110716428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110731248.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110747571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240221107634233.jpg)
(1)求该抛物线的标准方程.
(2)过Q的直线与抛物线的另一交点为R,与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110778266.png)
(1)
.(2)直线PQ垂直于x轴时|PR|取最小值
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110794527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110809407.png)
试题分析:(1)确定抛物线的标准方程,关键是确定
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110825191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110856584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110872651.png)
再根据P、Q在抛物线上,得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110872642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240221108871102.png)
(2)设直线PQ过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110903541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110919593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110934961.png)
消去x得y2 2my 2a=0,利用韦达定理,建立
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110965396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110965396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110981547.png)
试题解析: (1)∵ ·=0,则x1x2+y1y2=0, 1分
又P、Q在抛物线上,故y12=2px1,y22=2px2,故得
+y1y2=0, y1y2= 4p2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240221108871102.png)
又|x1x2|=4,故得4p2=4,p=1.
所以抛物线的方程为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110794527.png)
(2)设直线PQ过点E(a,0)且方程为x=my+a
联立方程组
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110934961.png)
消去x得y2 2my 2a=0
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240221110431046.png)
设直线PR与x轴交于点M(b,0),则可设直线PR方程为x=ny+b,并设R(x3,y3),
同理可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240221110591014.png)
由①、②可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022111075639.png)
由题意,Q为线段RT的中点,∴ y3=2y2,∴b=2a
又由(Ⅰ)知, y1y2= 4,代入①,可得
2a= 4 ∴ a=2.故b=4. 11分
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110981547.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240221111061584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022111121926.png)
当n=0,即直线PQ垂直于x轴时|PR|取最小值
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022110809407.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目