题目内容
【题目】已知函数(,).
(1)若在上单调递减,求的取值范围;
(2)当时,判断关于的方程的解的个数.
【答案】(1);(2)只有一个解.
【解析】试题分析:
(1)根据在恒成立求解即可,求解时可选用分离参数的方法.(2)由题意可得即判断方程根的个数,令,利用导数可得存在,使得 时 单调递减,当 时单调递增,又,→时,→,结合图象可得当,时,方程有一个解,即方程只有一个解.
试题解析:
(1)∵,
∴,
由题意得在恒成立,
即在恒成立,
设,
则,
∴在上单调递增,在上单调递减,
∴,
∴.
∴实数的取值范围为.
(2)由题意得,
∴,
令,
则,
令,
则,
∴在上单调递减,在上单调递增,
∴,
又,,
∴存在,使得 时, 单调递减;
当 时,,单调递增,
又,→时,→,
∴当,时,方程有一个解,
∴当时,方程只有一个解.
练习册系列答案
相关题目