题目内容
【题目】在直角坐标系中,曲线的参数方程为’(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求和的直角坐标方程;
(2)已知直线与轴交于点,且与曲线交于,两点,求的值.
【答案】(1)直线的直角坐标方程为,的普通方程;(2).
【解析】
(1)利用将直线的极坐标方程转化为直角坐标方程.利用将曲线的参数方程转化为直角坐标方程.(2)先求得点的坐标,写出直线的参数方程并代入的直角坐标方程,写出韦达定理,利用直线参数的几何意义求解出所要求的表达式的值.
解:(1)因为直线的极坐标方程为,所以直线的直角坐标方程为.
因为曲线的参数方程为(为参数),所以曲线的普通方程.
(2)由题可知,
所以直线的参数方程为,(为参数),
代入,得.
设,两点所对应的参数分别为,,
则,.
.
练习册系列答案
相关题目
【题目】2022年北京冬奥运动会即第24届冬季奥林匹克运动会将在2022年2月4日至2月20日在北京和张家口举行,某研究机构为了了解大学生对冰壶运动的兴趣,随机从某大学生中抽取了100人进行调查,经统计男生与女生的人数比为,男生中有20人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.
(1)完成列联表,并判断能否有把握认为“对冰壶运动是否有兴趣与性别有关”?
有兴趣 | 没有兴趣 | 合计 | |
男 | 20 | ||
女 | 15 | ||
合计 | 100 |
(2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取6人,求抽取的男生和女生分别为多少人?若从这6人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 |