题目内容

【题目】在直角坐标系中,直线的方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的直角坐标方程;

2)已知点,直线轴正半轴交于点,与曲线交于两点,且成等比数列,求直线的极坐标方程.

【答案】12

【解析】

1)利用余弦的二倍角公式,结合极坐标与直角坐标转化公式进行求解即可;

2)写出直线的参数方程,求出的表达式,将直线的参数方程代入曲线的直角坐标方程中,利用参数的意义,结合等比数列的性质进行求解即可.

1)方程可化为

代入上式,得曲线的直角坐标方程.

2)由直线的方程为,知直线过点

记直线的倾斜角为

设直线的参数方程为为参数),

,得点对应的参数值为,即

代入,得

整理,得

则有.

对应的参数值分别为

因为成等比数列,则

所以

所以

解得

的普通方程为

的极坐标方程为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网