题目内容
【题目】已知函数,曲线在点处的切线方程为.
(1)求,的值;
(2)证明函数存在唯一的极大值点,且.
【答案】(1)(2)证明见解析
【解析】
(1)求导,可得(1),(1),结合已知切线方程即可求得,的值;
(2)利用导数可得,,再构造新函数,利用导数求其最值即可得证.
(1)函数的定义域为,,
则(1),(1),
故曲线在点,(1)处的切线方程为,
又曲线在点,(1)处的切线方程为,
,;
(2)证明:由(1)知,,则,
令,则,易知在单调递减,
又,(1),
故存在,使得,
且当时,,单调递增,当,时,,单调递减,
由于,(1),(2),
故存在,使得,
且当时,,,单调递增,当,时,,,单调递减,
故函数存在唯一的极大值点,且,即,
则,
令,则,
故在上单调递增,
由于,故(2),即,
.
练习册系列答案
相关题目