题目内容
12.若sinα+cosα=$\frac{\sqrt{5}}{5}$(α是第二象限角),则tanα的值是( )A. | -2 | B. | -$\frac{1}{2}$ | C. | $\frac{4}{3}$ | D. | $\frac{2}{5}$ |
分析 已知等式两边平方,利用完全平方公式及同角三角函数间基本关系化简,整理求出2sinαcosα,判断出sinα与cosα的正负,再利用完全平方公式及同角三角函数间基本关系求出sinα-cosα的值,与已知等式联立求出sinα与cosα的值,即可确定出tanα的值.
解答 解:∵sinα+cosα=$\frac{\sqrt{5}}{5}$①,α是第二象限角,
∴(sinα+cosα)2=1+2sinαcosα=$\frac{1}{5}$,即2sinαcosα=-$\frac{4}{5}$,
∴cosα<0,sinα>0,即sinα-cosα>0,
∴(sinα-cosα)2=1-2sinαcosα=$\frac{9}{5}$,即sinα-cosα=$\frac{3\sqrt{5}}{5}$②,
①+②得:sinα=$\frac{2\sqrt{5}}{5}$,
①-②得:cosα=-$\frac{\sqrt{5}}{5}$,
则tanα=-2.
故选:A.
点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目
2.设0≤x≤2π,则函数f(x)=cos2x+4sinx-1的最大值为( )
A. | 5 | B. | 3 | C. | -5 | D. | 4 |
7.不等式-3x2<0的解集为( )
A. | ∅ | B. | R | C. | (-∞,0)∪(0,+∞) | D. | (-$\sqrt{3}$,$\sqrt{3}$) |
4.定义在R上的函数f(x)对任意0<x2<x1都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1.且函数y=f(x)的图象关于原点对称,若f(2)=2,则不等式f(x)-x>0的解集是( )
A. | (-2,0)∪(0,2) | B. | (-∞,-2)∪(2,+∞) | C. | (-∞,-2)∪(0,2) | D. | (-2,0)∪(2,+∞) |