题目内容
求经过两点,且圆心在轴上的圆的方程.
解析
(本题满分10分)已知线段的端点的坐标为,端点在圆:上运动。(1)求线段的中点的轨迹方程;(2)过点的直线与圆有两个交点,弦的长为,求直线的方程。
(本小题满分13分)如图所示,已知以点为圆心的圆与直线相切.过点的动直线与圆相交于,两点,是的中点,直线与相交于点.(1)求圆的方程;(2)当时,求直线的方程.(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.
(本小题满分12分)过点Q 作圆C:的切线,切点为D,且QD=4(1)求的值(2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且l交x轴于点A,交y 轴于点B,设,求的最小值(O为坐标原点)
(本小题满分12分).已知圆与直线相切。(1)求以圆O与y轴的交点为顶点,直线在x轴上的截距为半长轴长的椭圆C方程;(2)已知点A,若直线与椭圆C有两个不同的交点E,F,且直线AE的斜率与直线AF的斜率互为相反数;问直线的斜率是否为定值?若是求出这个定值;若不是,请说明理由.
(15分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆半径r的取值范围;(3)求圆心的轨迹方程。
若经过两点A(, 0),B(0, 2)的直线与圆相切,求的值
已知抛物线()的焦点为双曲线()的一个焦点,经过两曲线交点的直线恰过点,则该双曲线的离心率为( )